Skip to main navigation menu Skip to main content Skip to site footer

Original Articles

Vol. 4 No. 1 (2025)

Evaluating the Energy Production Potential of Local Algae Genera: A Case Study of Uasin Gishu County, Kenya

Published
2025-01-30

Abstract

The reliance on fossil fuels as an energy source has led to environmental degradation and a myriad of health problems. This has prompted the need for a renewable source of energy that is both economical and sustainable. The objective of this study was to determine the renewable energy potentials of the alga grown in sewage. In this study local genera of filamentous algae were grown in sewage and starch and lipids accumulated was quantified. Spirogyra, Zygnema and Oedogonium were collected from Kesses area of Uasin Gishu County, Kenya and cultured under laboratory conditions at Moi University. After seven days, the amount of starch was estimated and lipid content was extracted and quantified. Wilcoxon rank sum test was utilized to decide whether there was a statistical difference in starch and lipids produced by algae that grew in sewage and those that grew in growth medium. Results showed that the algae accumulated starch and lipids in the following order; Spirogyra, Oedogonium and Zygnema. It was also observed that growth in sewage favored lipid rather than starch accumulation (r = -0.75, n = 18, p < 0.05). The study recommends that fatty acid composition of the algae should also be analyzed to find their suitability in biodiesel production.

References

  1. Abubakar, L. U., Mutie, A. M., & Kenya, E. U. (2012). Characterization of algae oil (oilgae) and its potential as biofuel in Kenya.
  2. Boëchat, I. G., & Giani, A. (2000). Factors affecting biochemical composition of seston in an eutrophic reservoir (Pampulha Reservoir, Belo Horizonte, MG. Revista brasileira de biologia, 60, 63-71. https://www.scielo.br/j/rbbio/a/BwtbN5F7FXGGt58wkyc9Bgr/?lang=en
  3. Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217-226. https://doi.org/10.1016/j.biortech.2012.08.003
  4. Chandrasekhar, T., Varaprasad, D., Gnaneswari, P., Swapna, B., Riazunnisa, K., Anu Prasanna, V., ... & Lebaka, V. R. (2023). Algae: the reservoir of bioethanol. Fermentation, 9(8), 712. https://doi.org/10.3390/fermentation9080712
  5. Chew, K. W., Khoo, K. S., Foo, H. T., Chia, S. R., Walvekar, R., & Lim, S. S. (2021). Algae utilization and its role in the development of green cities. Chemosphere, 268, 129322. https://doi.org/10.1016/j.chemosphere.2020.129322
  6. Demirbas, A., & Demirbas, M. F. (2011). Importance of algae oil as a source of biodiesel. Energy conversion and management, 52(1), 163-170.
  7. Devi, A., Saran, C., Ferreira, L. F. R., Mulla, S. I., & Bharagava, R. N. (2024). Sustainable Approaches to Algal Biofuels: Opportunities, Key Challenges and Current Status. In Value Added Products From Bioalgae Based Biorefineries:
  8. Opportunities and Challenges (pp. 163-188). Singapore: Springer Nature Singapore. https://link.springer.com/
  9. chapter/10.1007/978-981-97-1662-3_8
  10. El-Sheekh, M. M., Galal, H. R., Mousa, A. S. H., & Farghl, A. A. (2023). Coupling wastewater treatment, biomass, lipids, and biodiesel production of some green microalgae. Environmental Science and Pollution Research, 30(12), 35492-35504. https://doi.org/10.1007/s11356-023-25628-y
  11. El-Sinawi, A., & Shathele, M. (2014). Biodiesel production and Environmental CO 2 cleanup using Oleaginous Microorganisms from Al-Hassa area in Saudi Arabia. Central European Journal of Engineering, 4, 379-384. https://link.springer.com/article/10.2478/s13531-013-0169-7
  12. Hallenbeck, P. C. (2011). Microbial Paths to Renewable Hydrogen Production. Biofuels, 2(3), 285-302. https://doi.org/10.4155/bfs.11.6. http://repository.embuni.ac.ke/handle/123456789/200
  13. Jabłońska-Trypuć, A., Wołejko, E., Ernazarovna, M. D., Głowacka, A., Sokołowska, G., & Wydro, U. (2023). Using algae for biofuel production: a review. Energies, 16(4), 1758. https://doi.org/10.3390/en16041758
  14. Keeling, P. L., & Myers, A. M. (2010). Biochemistry and genetics of starch synthesis. Annual review of food science and technology, 1(1), 271-303. https://doi.org/10.1146/annurev.food.102308.124214
  15. Khan, M. I., Shin, J. H., & Kim, J. D. (2014). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial cell factories, 17(1), 36. https://doi.org/10.1186/s12934-018-0879-x
  16. Kumar, S., D'Silva, T. C., Kumar, D., Isha, A., Khan, S. A., Chandra, R., ... & Vijay, V. K. (2023). Valorization of By‐Products Produced During the Extraction and Purification of Biofuels. Biofuel Extraction Techniques, 307-332.
  17. Li, Y., Han, D., Yoon, K., Zhu, S., Sommerfeld, M., & Hu, Q. (2013). Molecular and Cellular Mechanisms for Lipid Synthesis and Accumulation in Microalgae: biotechnological implications. Handbook of microalgal culture, 545-565. https://doi.org/10.1002/9781118567166.ch28
  18. Luo, Z., & Zhou, J. (2022). Thermal conversion of biomass. In Handbook of Climate Change Mitigation and Adaptation (pp. 965-1021). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-72579-2_27
  19. Narayanan, M. (2024). Marine algae biomass: A viable and renewable resource for biofuel production: a review. Algal Research, 103687. https://doi.org/10.1016/j.algal.2024.103687
  20. Ogbonna, C. N., & Nwoba, E. G. (2021). Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review. Renewable and Sustainable Energy Reviews, 139, 110690.
  21. Pate, R., Klise, G., & Wu, B. (2011). Resource demand implications for US algae biofuels production scale-up. Applied Energy, 88(10), 3377-3388.
  22. Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource technology, 102(1), 17-25. https://doi.org/10.1016/j.biortech.2010.06.035
  23. Rather, R. A., Wani, A. W., Mumtaz, S., Padder, S. A., Khan, A. H., Almohana, A. I., ... & Baba, T. R. (2022). Bioenergy: a foundation to environmental sustainability in a changing global climate scenario. Journal of King Saud University-
  24. Science, 34(1), 101734. https://doi.org/10.1016/j.jksus.2021.101734
  25. Sallam, E. R., Khairy, H. M., Elshobary, M., & Fetouh, H. A. (2022). Application of algae for hydrogen generation and utilization. In Handbook of research on algae as a sustainable solution for food, energy, and the environment (pp. 354-378). IGI Global. https://www.igi-global.com/chapter/application-of-algae-for-hydrogen-generation-and-utilization/306382
  26. Sarwer, A., Hamed, S. M., Osman, A. I., Jamil, F., Al-Muhtaseb, A. A. H., Alhajeri, N. S., & Rooney, D. W. (2022). Algal biomass valorization for biofuel production and carbon sequestration: a review. Environmental Chemistry Letters, 20(5), 2797-2851. https://doi.org/10.1007/s10311-022-01458-1
  27. Show, K. Y., Lee, D. J., & Mujumdar, A. S. (2015). Advances and challenges on algae harvesting and drying. Drying technology, 33(4), 386-394.
  28. Singh, A., & Olsen, S. I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of
  29. algal biofuels. Applied Energy, 88(10), 3548-3555. https://doi.org/10.1016/j.apenergy.2010.12.012
  30. Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Mechanism and challenges in commercialisation of algal biofuels. Bioresource technology, 102(1), 26-34. https://doi.org/10.1016/j.biortech.2010.06.057
  31. Sun, H., Zhao, W., Mao, X., Li, Y., Wu, T., & Chen, F. (2018). High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. Biotechnology for biofuels, 11, 1-23. https://link.springer.com/article/10.1186/s13068-018-1225-6
  32. Varaprasad, D., Narasimham, D., Paramesh, K., Sudha, N. R., Himabindu, Y., Keerthi Kumari, M., ... & Chandrasekhar, T. (2021). Improvement of ethanol production using green alga Chlorococcum minutum. Environmental Technology, 42(9), 1383-1391. https://www.tandfonline.com/doi/abs/10.1080/09593330.2019.1669719
  33. Veza, I., Hoang, A. T., Abbas, M. M., Tamaldin, N., Idris, M., Djamari, D. W., ... & Opia, A. C. (2022). Microalgae and macroalgae for third-generation bioethanol production. In Liquid biofuels: bioethanol (pp. 301-331). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-01241-9_14
  34. Yarkent, Ç., Oral, İ., Öncel, D. Ş., & Oncel, S. S. (2024). Focusing on a new biohydrogen production strategy (HS-HS) using Chlamydomonas reinhardtii mutants: The effects of mutation points on biohydrogen production capacity. International Journal of Hydrogen Energy, 52, 88-102. https://doi.org/10.1016/j.ijhydene.2023.02.034
Copyright © 2024 All rights reserved by International Journal of Education, Science and Social Sciences
ijessonline.com